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Abstract
This article will analyse the probabilities of outcomes of battles in the game “Bri-
tannia” with different forces and terrain.

1 The combat rules

We first summarize the combat rules for Britannia:
Combat in an area lasts one or more combat rounds until there is only one nation

in the area or the defending nation submits to the attacker. A combat round consists of
the following phases:

The die roll phase Here both sides roll one die per army, burh or fort in the area. Each
die has a chance of killing an opponent, see below.

The defender retreat phaseIf both nations still have forces in the area, any subset of
the remaining defenders can retreat.

The attacker retreat phase If both nations still have forces in the area, any subset of
the remaining attackers can retreat.

If, at the end of a combat round, both nations still have forces in the area and the
defender hasn’t submitted, another combat round is initiated.

A die is rolled for each army, burh or fort in the area. On each 5 or 6, one of the
opponent’s armies is removed. Losses are taken simultaneously on both sides, i.e., after
both sides have rolled their dice.

Exceptions:

• When fighting in a difficult-terrain area, it takes a 6 to kill a defending army,
burh or fort. Attackers are killed as normal.

• Cavalry and Romans kill other armies on 4, 5 or 6 in normal terrain. A 6 is
required to kill a Roman or cavalry army regardless of terrain.

• A leader does not roll any dice, but increases the die roll of all friendly armies,
burhs and forts in the area by 1. A 6 still counts as a 6.

So depending on circumstances, anything from a 3 to a 6 may be required to kill an
opponent.
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2 Probabilities for 1:1 battles

Let us start with the simplest possible battle: Two normal armies of different nations
facing each other in non-difficult terrain with no leaders present. Each roll one die, so
we can tabulate the results after one round by the following table:

Defender Attacker roll
roll 1 2 3 4 5 6
1 1A+1D 1A+1D 1A+1D 1A+1D 1A 1A
2 1A+1D 1A+1D 1A+1D 1A+1D 1A 1A
3 1A+1D 1A+1D 1A+1D 1A+1D 1A 1A
4 1A+1D 1A+1D 1A+1D 1A+1D 1A 1A
5 1D 1D 1D 1D none none
6 1D 1D 1D 1D none none

where the entries in the table indicate the survivors so, for example, “1A+1D” means
one attacker and one defender surviving. We can count the number of occurrences of
each result and get:

1A+1D 16
1A 8
1D 8

none 4

The total is 36 (6×6), so we get 16/36 chance of getting the result 1A+1D, and so on.
So these give us the results for one round of combat. But what about the final

results if noone retreats? It turns out we can just ignore the result that changes nothing
(i.e., 1A+1D), as these get rerolled, and only look at the remaining outcomes. The new
total is 20, so we get a probability of 8/20 for an end result of 1A or 1D and 4/20 for
no survivors.

Since many rolls have the same outcome, we can simplify the table somewhat:

Defender Attacker roll
roll 1–4 5–6
1–4 1A+1D 1A
5–6 1D none

and just multiply each entry by the number of outcomes, i.e., 1A+1D has 4×4 = 16
possibilites, 1A or 1D has 4×2 = 8 and “none” has 2×2 = 4 outcomes. Furthermore,
we can divide the number of occurences of each result by the largest common factor,
so we get

1A+1D 4
1A 2
1D 2

none 1

These simplifications make it easier to analyse the other cases. For example, a one-on-
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one battle in hilands give this table:

Defender Attacker roll
roll 1–5 6
1–4 1A+1D 1A
5–6 1D none

which translates to

1A+1D 10
1A 2
1D 5

none 1

after redocing by the largest common factor.
Again, we can ignore the 1A+1D row to get the probabilities for battles run to

completion. In similar ways, we can get Roman army vs. normal army in non-difficult
terrain (Roman is attacker):

1A+1D 5
1A 5
1D 1

none 1

and in difficult terrain:

1A+1D 25
1A 5
1D 5

none 1

I’ll not go through the calculations for battles with leaders or attacks on Romans in
difficult terrain, but leave these as an exercise for the reader.

3 Battles with multiple armies

If one or both sides in a battle have more than one army, things get a tad more compli-
cated, in particular if there is a mixture of cavalry and normal armies (or Romans and
forts) on one side. But we can use the same basic technique by setting up a table of
outcomes. Here, for example is the table for 2:2 in non-difficult terrain:

Defender Attacker roll
roll 1–4/1–4 1–4/5–6 5–6/1–4 5–6/5–6

1–4/1–4 2A+2D 2A+1D 2A+1D 2A
1–4/5–6 1A+2D 1A+1D 1A+1D 1A
5–6/1–4 1A+2D 1A+1D 1A+1D 1A
5–6/5–6 2D 1D 1D none
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where the “/” is used to separate the two dice that are rolled by a player. Note that,
for example, 1–4/1–4 represents 4×4 = 16 outcome and 1–4/5–6 represents 4×2 = 8
outcomes, so the entry that is cross-indexed by these two represents a total of 16×8 =
128 outcomes. Counting all outcomes and dividing by the common factor (16) gives
us:

2A+2D 16
2A+1D 16
1A+2D 16
1A+1D 16

2A 4
2D 4
1A 4
1D 4

none 1

The total is 81 ((64)/16). So one round of battle will have, for example, 16/81 chance
of ending with one survivor on each side. If we assume noone retreats until a loss is
taken, we can ingore the first row (2A+2D) to find the probabilities of the results after
at least one loss is taken on either side (or both). The new total is 81−16= 65 so, for
example, the chance of ending with 1A+1D after the first loss is 16/65. If the battle is
fought to completion (without any retreats), we must consider the further battle if we
end with 1A+1D, 2A+1D or 1A+2D. We already have the numbers for 1A+1D, so we
need to consider 2A+1D and 1A+2D. 2A+1D gives the table:

Defender Attacker roll
roll 1–4/1–4 1–4/5–6 5–6/1–4 5–6/5–6
1–4 2A+1D 2A 2A 2A
5–6 1A+1D 1A 1A 1A

which summarizes to:

2A+1D 8
1A+1D 4

2A 10
1A 5

out of a total of 27 ((63)/8) outcomes. If we ignore the “no effect” result of 2A+1D,
the total is 19. The 1A+2D case is symmetric (we just swap A and D), so we can
combine the results into the diagram below. Double circles indicate “final states” (no
more battles). The number on an arrow indicate the number of occurrences of going
from the origin state to the destination state, including “self-transitions”.
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We can use ths diagram for several different calculations. We have already seen how
we can find the probabilities for a single round of battle by dividing the number on each
outgoing transition by the total on all outgoing transitions, for example showing that
the chance of all being killed in the first round of battle in a 2:2 fight is 1/81. Similarly,
we can find the result of battling until the first loss(es) by dividing only by the total of
the transitionsexceptthe self-transitions. This gives, for example, a chance of 1/65 for
a 2:2 battle stopping at no survivors after the first loss.

We can also use the diagram to find the probabilities of each outcome when a battle
is fought to completion with no retreats on either side. To do this, we first find the
probability of each non-self transition by dividing the numbers on non-self transitions
by the sum of numbers on the non-self transitions out of the same state (like we did
above to find the results after first loss). So, for example, each number out of 2A+2D
is divided by 65 and each number out of 2A+1D is divided by 19. Now find all paths
(not using self-transitions) from the initial state to each final (double-circled) state,
multiplying the probabilities on the trasitions of each path and adding all the products
that lead to the same final state. As each non-self transition reduces the number of
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armies, all paths are finite and there are only a finite number of these.

Example

Starting from 2A+2D, we can get to 2A either directly with probability 4/65 or through
2A+1D with probability 16/65× 10/19 for a total probability of 4/65+ 16/65×
10/19 = 236/1235. Due to symmetry, this is the same as the probability of ending
in 2D.

Again from 2A+2D, we can get to 1A either directly with probability 4/65, trough
2A+1D with probability 16/65×5/19, through 1A+1D with probability 16/65×2/5
or through either 1A+2D or 2A+1 and then 1A+1D each with probability 16/65×
4/19×2/5. This adds up to 4/65+16/65×5/19+16/65×2/5+2×16/65×4/19×
2/5 = 1644/6175. 1D is symmetric, so it has the same probability.

From 2A+2D, we can get to “none” directly at probability 1/65, through 1A+1D
with probability 16/65× 1/5 or through either 1A+2D or 2A+1D and then 1A+1D
each with probability 16/65×4/19×1/5. This adds up to 1/65+16/65×1/5+2×
16/65×4/19×1/5 = 527/6157.

So we get the following table of final states and probabilities:

2A 1180/6175
2D 1180/6175
1A 1644/6175
1D 1644/6175

none 527/6157

Converting to percentages, we get:

2A 19.11%
2D 19.11%
1A 26.62%
1D 26.62%

none 8.53%

By starting at 2A+1D, 1A+2D or 1A+1D we can get probabilities for battles at these
odds as well. If we need larger number of armies, difficult terrain, leaders or Ro-
mans/cavalry, we need to make new diagrams like the above. This is not terribly com-
plicated, just a lot of work (and error-prone). Hence, it makes sense to make a program
to do the calculations.

4 Making a program

The purpose of the program is, given the number of attackers and defenders in a battle,
to determine the probability of each possible final result should the battle be fought to
completion.

To do this we will set up a diagram similar to the above and calculate a probability
for each node. The probability for the starting node is 1 and for the remaining nodes
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the probability is found as the sum of the probabilities of each possible predecessor,
each multiplied by the probability of the transition from the predecessor to the node in
question.

Given that the battle started withA attackers andD defenders, we can write the
following equations for the probability og getting toa attackers andd defenders during
the battle:

p(A,D) = 1
p(a,d) = ∑A,D

i, j=a,d p(i, j)× t(i, j,a,d) if (a,d) 6= (A,D)

t(i, j,a,d) = 0 if (i, j) = (a,d)
t(i, j,a,d) = 0 if i < j−d or j < i−a

t(i, j,a,d) = q(i, j,d)×q( j, i,a)
6(i+ j)−4(i+ j) otherwise

q(i, j,0) = ∑i
m= j 2

m×4(i−m)×
(

i
m

)
q(i, j,d) = 2( j−d)×4(i− j+d)×

(
i

j−d

)
The first equation just says that the initial state is certain. The second adds up the
probabilities of predecessors as described above.t(i, j,a,d) is the probability of get-
ting from (i, j) to (a,d). The first rule for this excludes self-transitions. The second
excludes transitions where there are not enough attackers to kill as many defenders as
the transition indicates or vice-versa. The third rule has the “meat” of the calculation.
It calculates how many rolls can get you from(i, j) to (a,d) and then divides this by the
total number of rollsexcludingthe number of rolls that don’t kill anything.q(i, j,d)
calculates how many waysi armies can reducej opponents tod. There is a special
case ford = 0 to handle “overkills”, i.e., having more kills on thei dice than required
to reducej to 0.(

n
m

)
is the number of ways you can pickm out of n items, and can be calculated

asn!/m!/(n−m)!, wheren! is the factorial ofn.
The probabilities above are calculated using the standard rule of kills on 5-6, so 2

out of 6 are kills and 4 out of 6 aren’t. Hence, the use of 2 and 4 in the formula. If
ak out of 6 kills for the attacker anddk out of 6 kills for the defender, we can use the
generalized equations below.q has been split intoqaandqd, as they must use different
probabilities for kills for attacker and defender.
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p(A,D) = 1
p(a,d) = ∑A,D

i, j=a,d p(i, j)× t(i, j,a,d) if (a,d) 6= (A,D)

t(i, j,a,d) = 0 if (i, j) = (a,d)
t(i, j,a,d) = 0 if i < j−d or j < i−a

t(i, j,a,d) = qa(i, j,d)×qd( j, i,a)
6(i+ j)− (6−ak)i × (6−dk) j otherwise

qa(i, j,0) = ∑i
m= j akm× (6−ak)(i−m)×

(
i
m

)
qa(i, j,d) = ak( j−d)× (6−ak)(i− j+d)×

(
i

j−d

)

qd( j, i,0) = ∑ j
m=i dkm× (6−dk)( j−m)×

(
j

m

)
qd( j, i,a) = dk(i−a)× (6−dk)( j−i+a)×

(
j

i−a

)
We can code the equations fairly directly in the programming language Haskell (see
http://www.haskell.org). I use the Hugs implementation of Haskell, as it is portable
and easy to use.

p0(ak,dk,aa,dd,a,d) = p(a,d) where

p(a,d) | (a,d)==(aa,dd) = 1
p(a,d) = sum [p(i,j)*t(i,j,a,d)

| i<-[a..aa], j <-[d..dd], (i,j)/=(a,d)]

t(i,j,a,d) | i<j-d || j<i-a = 0
t(i,j,a,d) = qa(i,j,d) * qd(j,i,a) / (6^(i+j) - (6-ak)^i * (6-dk)^j)

qa(i,j,0) = sum [ak^m * (6-ak)^(i-m) * k(i,m) | m<-[j..i]]
qa(i,j,d) = ak^(j-d) * (6-ak)^(i-j+d) * k(i,j-d)

qd(j,i,0) = sum [dk^m * (6-dk)^(j-m) * k(j,m) | m<-[i..j]]
qd(j,i,a) = dk^(i-a) * (6-dk)^(j-i+a) * k(j,i-a)

k(n,m) = fromInt(product [n-m+1..n] ‘div‘ product [1..m])

aa anddd are used instead ofA andD, as variables can’t start with capital letters. To
calculate the probability of reachinga attackers andd defenders when starting from
aa attackers anddd defenders when the attackers kill onak different numbers and the
defenders kill ondk different numbers, you just callp0(ak,dk,aa,dd,a,d).

The program isn’t very efficient, as it will recalculatep for the same values several
times, so you must be patient whenaa+dd is greater than 10, though. You can speed
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up the calculation by avoiding recomputation. This is done by storing the values of
p(a,d) in a data structure and look up in this instead of recomputing. We can do this
by rewriting the equations forp(a,d) as follows:

p(a,d) | (a,d)==(aa,dd) = 1
p(a,d) = sum [(pp!!i!!j)*t(i,j,a,d)

| i<-[a..aa], j <-[d..dd], (i,j)/=(a,d)]

pp = [[p(a,d)|d<-[0..dd]]|a<-[0..aa]]

The other equations are unchanged. Note that the recursive call to p has been replaced
by the lookup(pp!!i!!j). Now you can compute for all realistic battle sizes in rea-
sonable time.

5 A few sample cases

For those of you too lazy to run the above program yourself, I have computed the
results of a few common battles. The 1:1 cases were covered in the beginning, so these
involve multiple armies.

3A vs. 2D in normal terrain:

3A 26.6%
2A 36.3%
1A 18.8%

none 3.7%
1D 9.8%
2D 4.9%

4A vs. 2D in normal terrain:

4A 31.7%
3A 40.4%
2A 18.8%
1A 5.0%

none 0.9%
1D 2.2%
2D 0.9%

2A vs. 1D in difficult terrain:

2A 37.9%
1A 29.7%

none 5.4%
1D 26.9%

3A vs. 2D in difficult terrain:
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3A 13.9%
2A 22.5%
1A 15.2%

none 3.7%
1D 23.0%
2D 21.6%

4A vs. 2D in difficult terrain:

4A 18.6%
3A 29.2%
2A 20.0%
1A 9.2%

none 2.1%
1D 12.1%
2D 8.9%

1Roman vs. 2D in normal terrain:

1R 38.0%
none 7.6%
1D 31.0%
2D 23.4%

6 Conclusion

The general method for calculating probabilities extend also to battles with mixed
armies (e.g., with forts or cavalry), but you need to keep track of the numbers of each
type of army and the different dice these use, so it is a bit more work. The program can
also be extended to handle these cases, but it will add considerably to its complexity.

An alternative to calculating exact probabilities like shown above is to simulate a
large number of battles and count the occurences. This is often simpler to program and
if you run a sufficiently large number of battles (a few million should do), you can get
results that are fairly close to the exact probabilities. This isn’t useful for calculation
by hand, though.
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